The MiReCOL Project

Integrated demo-scale projects are currently being developed to demonstrate the feasibility of CCS. As part of the license application, these projects must develop a corrective measures plan, which describes the measures that can be taken when the CO₂ in the subsurface behaves in an unexpected way. The MiReCOL project supports the development of corrective measures plans and helps building confidence in the safety of deep subsurface CO₂ storage.

Setup of the MiReCOL project

The results from the MiReCOL project become relevant if, at some point during a CCS project, a ‘significant irregularity’ occurs. While a ‘significant irregularity’ may signal a threat to the safety and security of storage, the decision to take action should depend on both the unmitigated risk and the mitigated risk. The former represents the risk associated with the undesired behaviour of CO₂ that is detected in the subsurface, before any corrective actions are taken. The latter is the risk associated with the storage complex after applying the corrective or mitigation measure.

Three general scenarios are considered in the MiReCOL project, all related to processes in the (deep) subsurface:
1. Lack of conformance in the storage reservoir
2. Natural barrier breach (faults, caprock)
3. Well barrier loss

Storage reservoir

One of the areas in a storage complex where corrective measures can be applied is the storage reservoir, in cases when unexpected fluid flow represents a threat to safe and secure storage. An example would be a case in which the CO₂ plume is migrating towards a spill point or a fault zone. Effective corrective measure could be CO₂ back-production or brine withdrawal.

Well barrier loss

Wells are generally considered to represent the highest risk of leakages in a CO₂ storage project. Well leakages are caused by failure of one or several well barrier elements (e.g., tubing, cement). The MiReCOL project will review the available remediation techniques and evaluate how these can be applied to remediate leakages for a selection of the most likely CO₂ leakage scenarios.

MiReCOL toolbox

The combined description of remediation techniques will feed into guidelines. The guidelines will contain, for each remediation technique considered, an evaluation based on carbon footprint and other environmental impact; timescale to effective cessation of leakage; likelihood of success; economic cost; location of retention of the CO₂ and longevity of remediation.

The guidelines represent the project’s main result, which will be published as a web-based toolbox.

Acknowledgements

The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 608608.